A Blockchain Based Trusted Information Exchange Framework

Sachin Shetty
Associate Professor
Virginia Modeling, Analysis and Simulation Center
Old Dominion University

Deepak Tosh
Cyber security Researcher
Computer Science
Norfolk State University
Outline

Blockchain Overview

Blockchain for Information Sharing

Demo
Blockchain Overview

• Problem - How do distributed distrusting stakeholders agree on current system state?

• Solution - If technology can help the stakeholders to reach consensus on history, agreement on current system state can be reached
Blockchain Overview

- Why not use centralized databases?
 - Single point of compromise/failure
 - Too much power vested in one entity
 - Challenging to get every entity to agree on the one arbiter to trust
- Blockchain eliminates the need for a centralized trusted database
 - Share databases across diverse boundaries of trust
 - Transactions leverage self-contained proofs of validity and authorization
 - Multiple nodes provide validation through consensus
 - Robustness without need for expensive replication and disaster recovery
 - Automatically self-configure and synchronize in peer-to-peer fashion
Blockchain Overview

- **Decentralized Network**
 - Peer-to-Peer Architecture
 - Nodes can join/leave freely
 - No central arbitrator
 - Redundancy and robustness to link failures

- **Distributed Consensus**
 - Transaction record
 - Distributed public ledger
 - Validation by committee

- **Cryptographically Secure**
 - Immutable audit trail
 - Data tampering prevented
Blockchain Overview

- Chained sequence of hash records
 - No entity can change any past record.
- Several procedures for adding blocks to blockchain
- Validation of blocks
 - Enforced by consensus protocols

Blockchain Overview

- **Hash Chain**
 - Building block of blockchains
 - Curbs centralized arbitrator’s ability to modify history
 - Cryptographic hash function (SHA256).
 - Mathematically impossible to find two inputs with the same hash value.
 - Translates to every record (N) has a commitment to N-1 which is committed to record N-2 and so on and so forth

<table>
<thead>
<tr>
<th>Index</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>d1</td>
</tr>
<tr>
<td>Prev</td>
<td>0</td>
</tr>
<tr>
<td>Nonce</td>
<td>n1</td>
</tr>
<tr>
<td>Hash</td>
<td>h1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>d2</td>
</tr>
<tr>
<td>Prev</td>
<td>h1</td>
</tr>
<tr>
<td>Nonce</td>
<td>n2</td>
</tr>
<tr>
<td>Hash</td>
<td>h2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>d3</td>
</tr>
<tr>
<td>Prev</td>
<td>h2</td>
</tr>
<tr>
<td>Nonce</td>
<td>n3</td>
</tr>
<tr>
<td>Hash</td>
<td>h3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>d4</td>
</tr>
<tr>
<td>Prev</td>
<td>h3</td>
</tr>
<tr>
<td>Nonce</td>
<td>n4</td>
</tr>
<tr>
<td>Hash</td>
<td>h4</td>
</tr>
</tbody>
</table>
Blockchain Overview

- Attack on hashed chain
Blockchain Overview

- **Propagation of attack in hashed chain**
 - Changing record N results in changes to final hashes of records N+1, N+2, etc

<table>
<thead>
<tr>
<th>Index</th>
<th>Data</th>
<th>Prev</th>
<th>Nonce</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d1</td>
<td>0</td>
<td>n1</td>
<td>h1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Data</th>
<th>Prev</th>
<th>Nonce</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>d3</td>
<td>h1</td>
<td>n2</td>
<td>h2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Data</th>
<th>Prev</th>
<th>Nonce</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>d3</td>
<td>h2</td>
<td>n3</td>
<td>h3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Data</th>
<th>Prev</th>
<th>Nonce</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>d4</td>
<td>h3</td>
<td>n4</td>
<td>h4</td>
</tr>
</tbody>
</table>
Blockchain Overview

• **Proof of Work**
 • Carry out large computation
 • Prove that computation was successfully
 • No additional work to check the proof
 • Limits the rate of new blocks
 • Expensive to add invalid blocks
 • Aids in deciding between competing chains by choosing the one with the most work.

• **Proof of Stake**
 • Achieve consensus by eliminating expense proof of work
 • Block creation tied to amount of stake

• **Byzantine Fault Tolerance**
 • Trusted entities work together to add records
 • Voting process for accepting a block on the chain
Blockchain Overview

- **Permissionless Blockchain**
 - Infrastructures
 - Open access on the Internet
 - Anyone can use
 - Anonymous validators
 - Proof of Work consensus
 - Public network

- **Permissioned Blockchain**
 - Infrastructures
 - Private network
 - Participation by members only
 - Trusted validators
 - Customized consensus protocol
 - Members set rules
 - Restricted access

Internet

Intranet
Blockchain Overview

- Incentives in permissionless infrastructure
 - Miners ensure sustainability of system
 - Incentive is the capital invested in Bitcoin
 - Payoffs in Bitcoin involves moving money around

- Incentives in permissioned infrastructure
 - How to build payoff into consensus protocol to share cyber threats?
Blockchain Summary

- No need to trust each other or have a trusted third party
- Distributed system
- Agreement on history translates to agreeing on system state
- Nth record in the hash chain commits to all previous records.
- Any change in previous record invalidates hash chain
- A blockchain is a hash chain with procedures for validity and resolve disagreements
 - Permissionless vs Permissioned infrastructure
 - Proof of Work vs Proof of Stake vs Proof of Storage, etc
Trusted Information Exchange Framework Needs

- Anonymity
- Privacy
- Integrity of Entities exchanging information
- Integrity of Stored Information
- Inability to attribute to individuals sharing information
- Eliminating free-riders
- Avoid spurious information

Same as anonymity
ProvChain

Information Exchange using Blockchain

- **Integrity of participating entity**
- Each entity can be deployed onto the blockchain with an identifier (ID)

- Blockchain will not allow the un-authorized changing of ID

- Blockchain will not allow the un-authorized addition of an entity to the system

- It will be trivial for the Blockchain to check if a particular ID is valid and exists in the system
Information Exchange using Blockchain

- Integrity of historic transactions
- Transaction can be represented as message, command, data exchange, action within the system
- Historical transcripts are easily tracked for each particular entity
- Blockchain will not allow the alteration of historical transcripts
- If alteration is attempted, detection will be easy
- Once detected the majority (validators) will reject the change
Information Exchange using Blockchain

- Integrity of data transmission
- Data in transit can be spoofed or intercepted

- Blockchain can be used to determine who should message who, if this rule changes without authorization blockchain will not allow it and detection will occur

- If the attacker intercepts message in transit additional encryption will be needed such as public private key
Information Exchange using Blockchain

- Integrity of stored data
 - Data records from entities stored in datacenters can be timestamped on the blockchain

- Any changes to the data will require authorization by the blockchain

- Blockchain will not allow changes to the history of data

- If un-authorized changes occur, blockchain can determine the faulty change, not allow the change, and report.
Thank You

Sachin Shetty
sshetty@odu.edu
www.odu.edu/~sshetty

Deepak Tosh
dktosh@nsu.edu